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ABSTRACT
Reverse Time Migration (RTM) has become the standard
for high-quality imaging in the seismic industry. RTM re-
lies on PDE solutions using stencils that are 8th order or
larger, which require large-scale HPC clusters to meet the
computational demands. However, the rising power con-
sumption of conventional cluster technology has prompted
investigation of architectural alternatives that offer higher
computational efficiency. In this work, we compare the per-
formance and energy efficiency of three architectural alter-
natives – the Intel Nehalem X5530 multicore processor, the
NVIDIA Tesla C2050 GPU, and a general-purpose manycore
chip design optimized for high-order wave equations called
“Green Wave.” We have developed an FPGA-accelerated
architectural simulation platform to accurately model the
power and performance of the Green Wave design. Results
show that across highly-tuned high-order RTM stencils, the
Green Wave implementation can offer up to 8× and 3.5×
energy efficiency improvement per node respectively, com-
pared with the Nehalem and GPU platforms. These results
point to the enormous potential energy advantages of our
hardware/software co-design methodology.
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1. INTRODUCTION
In recent years Reverse Time Migration (RTM)[5] has be-

come the high quality standard for seismic imaging for the
oil and gas exploration industry. Although the RTM method
has been well established for many years, its application has
been limited due to the high computational requirements of
this method, which require large-scale HPC systems operat-
ing for months at a time on a single problem. In the past,
the capital expense of acquiring the HPC platform domi-
nated total cost of ownership (TCO), but is rapidly being
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outstripped by the operational expenses of power and cool-
ing for these systems [22]. As power becomes a primary cost
in high-end computing, any effective large-scale solution for
next-generation RTM simulations must deliver performance
in an energy-efficient manner. The free-lunch of getting per-
formance improvements from ever-increasing clock frequen-
cies is over [2] and more radical approaches to improving
the energy efficiency of computer architectures are going to
be required to avert a power crisis or catastrophic stall in
computing performance [14]. The quest for more energy-
efficient approaches has spawned a revolution in multicore
technology and renewed interest in alternative architectures
such as GPUs (graphics processing units), FPGAs (field-
programmable gate arrays) and other novel solutions with
a complex tradeoffs between performance, programmability,
and energy-efficiency. In this work we examine the perfor-
mance and power requirements of the high-order wave equa-
tion stencils found at the heart of RTM wavefield modeling
on modern Nehalem X5530 CPUs and NVIDIA Fermi C2050
GPUs, and an energy-efficient manycore solution based on
low-power embedded cores called Green Wave.

The Green Wave design is built upon energy-efficient em-
bedded processor cores [41], and uses a hardware/software
co-design methodology to maximize RTM-based stencil per-
formance and efficiency. The design remains fully program-
mable and general purpose, but uses the co-design process
to optimize energy efficiency for the target workload. This
is different from a fixed-function logic design that cannot de-
part from its designed purpose. To facilitate the co-design
process, we develop a rapid design prototyping framework
named CoDEx [37] that uses the standard toolchain to rapidly
synthesize gate-level RTL implementations of the target node
design and accurately predict the performance and power
characteristics of this chip design for the RTM application
using validated cycle-accurate logic and DRAM simulators.
Overall, compared to highly optimized Nehalem and Fermi
implementations, Green Wave demonstrates up to an order
of magnitude improvement in energy efficiency — highlight-
ing the potential of a semi-custom co-design approach as
a path towards designing high-performance, energy-efficient
systems while maintaining full programmability.

This work makes several contributions. First, it is one of
the few studies to present a direct comparisons between a
highly optimized CPU and GPU implementations of RTM
kernel calculations. We also introduce a manycore-based
chip architecture and system design that uses commodity
off-the-shelf IP (intellectual property) components from the
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Figure 1: RTM Problem Decomposition and Stencils (a) generic decomposition, (b) streaming planes, (c)
multibuffering, (d) wave equation stencil in which black represents the Laplacian Stencil and gray represents
the time derivative.

embedded space thereby reducing the cost and risk of pro-
ducing such an ASIC (application-specific integrated cir-
cuit). Additionally, we demonstrate how a hardware/software
co-design process that uses cycle-accurate FPGA hardware
emulation can iteratively optimize the design for RTM-stencil
calculation requirements. Finally, we demonstrate that a
co-design process can create a fully-programmable general-
purpose design, while offering an order of magnitude better
energy efficiency than conventional approaches for the target
application. This design process holds promise as a novel
approach for creating computationally efficient systems to
tackle a wide variety of demanding numerical problems, and
reduces the cost and schedule risks of designing a full-custom
machine architecture. Overall, our system design enables
the seismic industry to take the next step in large-scale high
quality survey processing and leads the way towards inter-
active seismic modeling on mobile platforms.

2. OVERVIEW AND RELATED WORK
In numerous seismological applications it is necessary to

create a subsurface reflectivity image to perform various
analyses of the Earth’s interior including crust development
and exploration for hydrocarbons or minerals. This pro-
cess entails collecting seismic data of the area via an en-
ergy source, such as explosion, that generates acoustic waves
which are reflected by impedance contrasts of rock layers.
Each of these “shots” has an array of receivers that lis-
ten to reflection for several seconds, followed by the shot
movement in equidistant offsets until the area of interest is
covered. To effectively translate this process into a qual-
ity image, a sophisticated seismic processing workflow has
been developed involving several iterative steps including
data acquisition and preprocessing, velocity modeling, wave-
field migration and imaging [47]. In this work we employ
a hardware/software co-design process focused on reducing
the overhead of the seismic wavefield migration phase —
the most computational-intensive component of this work-
flow methodology. This phase is used to correct misposi-
tioned reflectors by cross-correlating the source and receiver
wavefield to the desired subsurface image.

2.1 Reverse Time Migration
The RTM algorithm is composed of three main steps. In

the first, the source wavefield is propagated forward in time
starting from a synthetic simulated source signal at time
zero. Next, the receiver wavefield is computed by propagat-
ing the receiver data backwards in time. Finally, the imaging

condition cross-correlates the source and receiver wavefield
to create the final subsurface image. Our study focuses on
the wavefield propagation kernel in the first two steps and
requires most of the overall RTM computation time. Specifi-
cally, the kernel consumes more than 90% of execution time
during the forward propagation step based on benchmark
timings of current optimized RTM implementations [1].

Recent advances in computer architecture have allowed
this numerically intensive technique to be utilized in pro-
duction seismic computing. However, its large computa-
tional demands result in extremely slow processing or lim-
ited, low-resolution seismic analysis on large-scale systems.
It is therefore critical to improve the performance and energy
efficiency of these techniques for next generation processing.

The simulation of the wavefield propagation is performed
most commonly with an approximation of the wave equation
represented, where c is the velocity function, u is the pres-

sure function at point (x, y, z) ∈ R3:
(

∆− 1
c2

∂2

∂t2

)
u = 0.

The approximation to this equation can be derived us-
ing either implicit or explicit techniques. The former leads
to large linear systems that can leverage large-scale paral-
lel solvers such as PETSc [3] but can suffer from scalability
limitations at high concurrency. The explicit approach, ex-
amined here, computes the next timestep of the wavefield
propagation via a “stencil” update for each point using fixed
timesteps. Note that 32-bit values are standard across the
seismic industry, provide sufficient accuracy to receive high
quality imaging results, and are used throughout our study.
Even lower bit widths have been considered to further in-
crease performance of FPGA-based solutions [16].

2.2 Higher Order Stencils
Stencil computations are used in a broad range of sci-

entific applications involving finite-differencing methods to
solve partial differential equations (PDEs) on regular grids.
At each point, a nearest-neighbor computation (stencil) is
performed, where the value is updated with weighted con-
tributions from a subset of points neighboring in time and
space. The stencil “order” is a theoretical bound on the rate
at which error decreases relative to increased resolution of
pressure field derivation approximation. Here, we also refer
to order as the most distant stencil calculations point. Thus,
high-order stencils typically generate large working sets.

Figure 1 shows an example of an RTM decomposition
and stencil computational structure. Figure 1(a) depicts
the large grid associated with each process. Figure 1(b) and



Wave Equation 8th 12th

Points in Laplacian component 25 37
Points in time derivative component 2 2

Velocity component 1 1
Total points accessed per

wave equation stencil
27 39

Floating-point operations (flops) 26 add, 38 add,
per wave equation stencil 7 mul 9 mul

Compulsory DRAM Bytes per Stencil 16.2 16.3

Typical Bytes per stencil
(5123 with 256 KB local store)

17.6 18.3

Grid Volume (5123) 2.1 GB 2.1 GB
Ghost Zone Volume (5123) 24.4 MB 36.9 MB

Table 1: Characteristics of isotropic 8th and 12th

order wave equations. Both the Laplacian and time
derivatives share a common point, reducing the total
number of points per wave equation stencil by one.

(c) visualize optimization techniques detailed in Section 5.
As discussed, the wave equation is comprised of a Lapla-
cian stencil and a time derivative. Figure 1(d) visualizes a
8th-order Laplacian stencil (in black) and a 2nd-order time
derivative (in gray). The Laplacian component requires ac-
cessing 25 points and performing a linear combination using
5 weights (one for each of the four equidistant sextuplets
of grid points and one for the center). Thus, the Laplacian
performs 5 floating-point multiplies and 24 floating-point
additions. The wave equation’s time derivative requires ac-
cessing not only the spatial grid point at the current and
previous time steps, but also the medium’s velocity at that
point. When the Laplacian and time derivative are com-
bined, we see the complexity of the inhomogeneous isotropic
wave equation’s stencil. Higher order Laplacian stencils (e.g.
12th-order) will access neighboring points further from the
center and induce a corresponding increase in computation.

Table 1 details the computational and bandwidth char-
acteristics of the two wave equation implementations, 8th

and 12th order. A 5123 problem size per node was selected
for the cross-comparison between architectures because it
presents the best performance on the CPU and GPU and it
fully occupies the GPU on-board memory. In this paper we
focus on the forward propagating component of RTM, which
provides an accurate characterization of the computational
requirements of the seismic processing application [1].

2.3 Survey Analysis Resource Requirements
The computational resource decisions of seismic survey

analysis are based on today’s largest 3D marine seismic stud-
ies combined with fine grained resolutions, which result in
an upper boundary for migration parameters that have to be
handled by the system. The enormous financial expenses of
data collection alone makes it mandatory to cover as much
area as possible with a single survey. Additionally, new nu-
merical methods offer advances in image fidelity at the cost
of increased computational overhead. Thus, there is strong
motivation to accelerate processing rates and image qual-
ity without increasing power costs, lest the increased energy
consumption negate the potential cost savings.

Consider a modern survey size of 30km in streamline (x),
20km in crossline (y) and 10km in depth (z). To conduct this
analysis, an exploration ship tows 10 streamer lanes with
1000 receivers (e.g. microphones) each. All receivers have a
time sampling interval of 1ms and listen a total of 12 seconds

to reflections from the subsurface. Thus, 12,000 timesteps
have to be processed in order to receive the wavefield for the
next timestep. With shot offsets of 50m × 100m, 120,000
shots are necessary to cover the survey area. The calcula-
tion is proceeded on a space grid of 5m in all dimension.
With these space sampling intervals a total shot volume of
4000×4000×2000 points has to be processed for each shot
for all timesteps (rounded up to 4096×4096×2048 to ease
binary handling). On current systems, it takes months to
process the sheer scale of such a survey.

Given these requirements we now examine the most time
intensive components of RTM: forward and backward RTM
wavefield modeling. For the given survey size to reach a
computational time of a week, it would require the largest
supercomputer in the world containing more than 1M cores
and consuming at least 38 MW of power. However, the en-
ergy cost alone of operating such a large system is likely
prohibitive, as even inexpensive power (7 cents/kwh) trans-
lates to approximately $1M/year per megawatt for a total
of $38M dollars per year. The goal of this project is there-
fore to demonstrate that using an HPC platform tailored to
the requirements of the RTM computation, can enable a one
week turn around for seismic image processing with an order
of magnitude improvement in the power requirements. This
kind of energy efficiency would enable the unprecedented
potential of interactive processing, resulting in a transfor-
mation improvement in the seismic processing workflow.

2.4 Related Work
There have been numerous studies examining architec-

tural performance on seismic algorithms [8, 25, 33]. Tech-
niques to accelerate these methods have also been explored
on FPGA platforms [12, 17, 31]. Recently, researchers have
evaluated optimization schemes on GPUs [15, 26]. Various
approaches have also been examined to address the band-
width limitations of seismic migration codes [13, 40, 43].

Reorganizing stencil calculations to take full advantage of
memory hierarchies has been the subject of much investiga-
tion over the years. These have principally focused on tiling
optimizations [9, 10, 24, 35, 36] that attempt to reorganize
stencil calculations to exploit locality and reduce capacity
misses; such optimizations are effective when the problem
size is larger than the cache’s ability to exploit temporal lo-
cality. Additionally, investigations have explore the poten-
tial of local-store based processor technologies on stencil sim-
ulations [46] as much of the memory traffic could effectively
be hidden via scratchpad double buffering. We have also
recently studied the impact of co-tuning strategies in which
traditional architecture space exploration is tightly coupled
with software auto-tuning for delivering substantial improve-
ments in area and energy efficiency [30]. Recent work in
architectural specialization include the Anton molecular dy-
namics platform that achieved two orders magnitude im-
provement over existing supercomputing systems at a frac-
tion of the power requirements [38]. Finally, our group has
conducted a detailed exploration of Green Flash, a many-
core processor design for high-performance systems based
on embedded computing low-power architectures, specifi-
cally targeted for ultra-high resolution climate simulations
[11, 45]. Green Wave and Green Flash are different pa-
rameterizations of the same 128-core, local store augmented
architecture. Specifically, Green Flash used a generic mem-
ory subsystem capable of 50GB/s (rather than quad-channel



DDR3), used 128KB local stores (instead of 256KB), used
scalar XTensa cores (instead of VLIW XTensa), and lacked
any instruction extensions for address calculations. In this
work, the methodology of coupling applications, algorithms,
and hardware is applied in the context of seismic modeling
and produces the Green Wave design.

3. EVALUATED PLATFORMS
In this section we detail the hardware architecture eval-

uated in our study. To ensure a fair comparison, we in-
clude among the most modern CPUs (Intel’s Xeon E5530
Nehalem) and GPUs (NVIDIA’s Tesla C2050), and exam-
ine highly optimized wave equation implementations on each
platform. Performance and energy efficiency is compared
against Green Wave: our manycore design that trades high
peak flop rates for vastly increased on-chip capacity to maxi-
mize on-chip locality. Key features of the three architectural
approaches as shown in Table 2.

3.1 Intel Xeon X5530 (Nehalem)
The Intel “Nehalem” X5530 CPU is the built on Intel’s

“Core”architecture. The architecture, reminiscent of AMD’s
Opteron processors, integrates memory controllers on-chip
and implements a QuickPath Interconnect (QPI) inter-chip
network similar to AMD’s HyperTransport (HT). QPI pro-
vides access to remote memory controllers and I/O devices,
while also maintaining cache coherency. Although Nehalem
offers two-way simultaneous multithreading (SMT) and Tur-
boMode, both were disabled on our test machines.

The evaluated system is a dual-socket, quad-core 2.40 GHz
Xeon X5530 with a total of 16 hardware thread contexts.
Each core has a private 32 KB L1 and a 256 KB L2 cache,
and each socket instantiates a shared 8 MB L3 cache. Each
socket integrates three DDR3 memory controllers operating
at 1066 MHz, providing a theoretical DRAM pin bandwidth
of 25.6 GB/s to each socket. However, in practice bandwidth
is often less than 19 GB/s.

3.2 Fermi
GPUs have recently gained adoption in many non-graphics

related fields, including seismic computing through NVIDIA’s
Compute Unified Device Architecture (CUDA) programming
model. GPUs simultaneously execute many threads per
core, hiding latency by switching between numerous concur-
rent threads. Threads are grouped into programmer-defined
thread blocks, where threads within a thread block can syn-
chronize and communicate via shared memory.

In this paper we examine NVIDIA’s Fermi-based Tesla
C2050, a high performance computing (HPC) oriented GPU.
The C2050 consists of 14 Streaming Multiprocessors (SMs),
768 KB of L2 cache, and 3 GB of GDDR5 global memory.
Each SM consists of 32 cores operating at 1.15 GHz, 32K 32-
bit registers, and 64 KB of memory that can be configured
in a 1:3 ratio as either shared memory or L1 cache. Ag-
gregate shared memory (local store) bandwidth across the
C2050 GPU is 1.03 TB/s, whereas global memory theoreti-
cal bandwidth is 144 GB/s and is accessible by all threads
as well as host CPU. In our experiments we use the GPU
with ECC (error correction code) enabled, which somewhat
reduces global memory bandwidth. The L2 cache is coher-
ent across all SMs, whereas L1 caches are not. Since GPUs
are accelerator cards they communicate through intercon-
nects like PCIExpress and incur the respective host transfer

Core Intel NVIDIA Tensilica
Architecture Nehalem GF100 LX2

superscalar dual-warp VLIW
Type out-of-order in-order in-order

SIMD SIMT custom
Clock (GHz) 2.40 1.15 1.00
SP GFlop/s 19.2 73.6 2.00
L1 Data $ 32 KB 16 KB 8 KB

L2 Data $/LS 256 KB 48 KB 256 KB
SMP Xeon E5530 Tesla C2050 Green

Architecture (Gainestown) (Fermi) Wave
Threads/core 2 48 (max) 1

Cores/socket 4 14† 128
Sockets/SMP 2 1 1
Shared Last $ 8 MB/socket 768 KB —

memory
parallelism

HW prefetch Multithreading DMA

On-chip RAM 18.3 MB 3.4 MB 32 MB
DRAM Pin GB/s 51.2 144 (no ecc) 51.2

SP GFlop/s 153.6 1030.4 256
Power under 390W (System)

RTM load
298W

214W (GPU-only)
66W‡

Die Area 263mm2 576mm2 294mm2

Process 45nm 40nm 45nm

Table 2: Details of the evaluated architectures. †We
call each shared multiprocessor on a GPU a “core”.
All bandwidths and flop rates are peak theoretical.
‡All power is measured using an inline meter except
Green Wave which is derived via modeling tools.

time. The grid sizes in all our experiments were sufficiently
small that they fit in the 3GB of GPU memory. As such,
the limited PCIe bandwidth is amortized by the relatively
small ghost zone exchanges.

3.3 Green Wave Architecture
The Green Wave architecture is optimized for energy ef-

ficiency (sustained flops per Watt) for stencil-based codes.
Our approach is motivated by the stagnation of CPU clock
rates, which is driving future performance to be extracted
from explicit parallelism. In combination with the increas-
ing cost of data movement, large arrays of simple, low-power
cores are set to offer the best performance per Watt and
greatest scalability [2]. Additionally, it is generally agreed
that application specificity offers greater efficiency. Thus
the goal of our application-driven co-design Green Wave
approach, is to enable full programmability while allowing
greater computational efficiency than general-purpose pro-
cessors and even GPUs by offering custom ISA extensions,
and optimally sizing software managed memories and the
on-chip network interconnect. This semi-custom design ap-
proach offers the advantage of serving the needs of a broad
variety of scientific codes in contrast to full custom designs.

The lowest-level building blocks of the Green Wave design
are pre-verified IP components from the embedded space.
We then layer novel processor extensions and communica-
tion services for greater performance and efficiency. This ap-
proach minimizes the amount of design custom logic, which
in turn reduces verification costs and design uncertainty. Ex-
tensive exploration of our Green Flash climate-simulation
design have shown this to be an effective approach [11, 45].

Our hardware architecture is built upon the highly energy-
efficient Tensilica LX2 core [41], a single-issue in-order in-
struction processor combined with a floating point unit that
can be customized in several dimensions. Tensilica’s Xtensa
Processor Generator (XPG) toolchain enables rapid proto-
typing of custom microprocessor cores. We assume a 45nm
chip lithography technology to be consistent with the tech-
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Figure 2: Green Wave CMP Architecture -
Lightweight Tensilica LX2 embedded cores are inter-
connected a scalable 2D concentrated torus on-chip
communication fabric for peripheral devices such as
memory controllers and off-chip IO.

nology scale used for the other processors in this study (Ta-
ble 2). At 45nm, the LX2 can achieve a clock rate of 1GHz
The XPG tool, allows the addition of new instructions to the
base LX2 ISA (Instruction Set Architecture), as well as ad-
ditional memory and interprocessor network interfaces. In
this work, we modify the standard 80-instruction ISA in-
cluded on each LX2 to include custom designed instructions
and extensions specifically geared to accelerate stencil-based
RTM modeling(Section 5.3). In addition, we customize the
size and configuration of the memory hierarchy — defining
data cache sizes and even local stores (software controlled
memories) to fit the RTM problem requirements as well as
give an overview over the full system design. This study
focuses on single-node performance.

The XPG tool outputs both synthesizable RTL (register
transfer level) that can be used to create masks for a full
chip design, or target an FPGA platform for cycle-accurate
modeling of the target core design. In addition, XPG auto-
matically generates C/C++ compilers, debuggers, and func-
tional models that facilitate rapid software porting and test-
ing of each new architectural variant. This environment
for rapid prototyping and cycle-accurate emulation environ-
ment is central to our hardware/software co-design process.

The Green Wave on-chip interprocessor fabric is derived
from the Green Flash design [11, 45]. The lightweight cores
are interconnected using a scalable 4-way concentrated torus
topology Network-on-Chip (NoC) shown in Figure 2, which
is parameterized allowing networks of different performance
and scale. We adopted this topology based on our recent
cycle-accurate NoC studies [18, 19], which have shown that
this approach provides the most energy-efficient solution for
problems — such as stencil-based RTM code — where the
communication pattern is predominantly nearest neighbor.
For this design study, the interprocessor communication is
used primarily for communication between cores and mem-
ory controllers (for data load/store) and to facilitate energy-
efficient halo (ghost-zone) exchanges between the cores to
further reduce memory bandwidth requirements by elimi-
nating redundant loads associated with high-order stencils.

4. GREEN WAVE MODELING
A combination of both software-based tools and hard-

ware emulation techniques are used to predict the perfor-
mance and power of the Green Wave architecture. Cycle
accurate software models from Tensilica provide us with
a flexible, pre-built simulation solution for initial architec-
tural exploration. In addition, software-based power mod-
els provide dynamic power estimations while executing the
RTM application. Network simulation environments, such
as PhoenixSim provide the ability to model on-chip commu-
nication. Finally, hardware emulation techniques provide
us with very fast, real world performance predictions based
directly on the RTL simulations of the processor These num-
bers give confidence that our theoretical chip design, com-
plete with custom ISA extensions, is physically realizable.
Together these tools make up a preliminary version of the
co-design for exascale (CoDEx) simulation environment [37].

4.1 Modeling Chip Power
Green Wave power estimation is created by combining

the output of several specialized models. First, energy for
events originating in the cores is calculated using the en-
ergy estimates provided by the industrial-strength Tensilica
tools [41]. These estimates are created from feedback given
to Tensilica from customers who fabricated their processors
then measured the actual power consumption. Second, the
dynamic energy for the caches and local stores is modeled on
a per transaction basis using CACTI5 [42] modeling. Third,
on-chip network energy is calculated by starting with the to-
tal on-chip network communication requirements and then
scaling the energy numbers from recent studies [23] for our
target process technology. The NoC traffic patterns for halo
exchange and associated power are modeled in detail using
PhoenixSim, in collaboration with the Columbia University
[18, 19], and showed that a concentrated torus as the most
energy-efficient topology for this class of applications. The
network simulation use router and wire power costs derived
from Dally and Balfour’s study on electronic NoC model-
ing [4]. Leakage power is assumed to be 20% of peak power
consumed by the processor, on-chip memory and network
for any configuration. Finally, we model DRAM energy us-
ing the current profiles from the Micron datasheets [29] for
a 1 Gb DDR3-1600 memory module and refine the model
for performance and power consumption using the cycle ac-
curate DRAMsim2 memory architectural simulator [44] to
analyze memory access traces collected through simulation
of the Green Wave core executing the the wave propagation
kernel. A breakdown of Green Wave power components is
shown in Figure 3(left). Given the low-power nature of the
Tensilica cores, observe DRAM power constitutes roughly
half of the node’s total power. A Green Wave System on
Chip (SoC) design would also include an on-board Infiniband
(IB) 4x QDR interface, but we do not currently include the
power or area for this interface in our model. Future work
will also take into account the power consumption from an
on-board IB interface, but estimates based on existing ex-
amples suggest it will consume area similar to that of the
DDR-3 memory interface and between half to one quarter
the power depending on drive strength requirements.

4.2 Modeling Chip Area
The area of a given processor configuration is an impor-

tant metric due to its effect on the end cost of fabricating and
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Figure 3: Green Wave Component Breakdown, showing each component contribution of (left) total node
power consumption and (right) total die area.

packaging the ASIC design. To this end, we model the hard-
ware configuration area within the design space, assuming
45nm chip lithography technology to ensure a fair compari-
son against the GPU and Nehalem’s that use the a similar
feature size. For estimates of the XTensa core area, the Ten-
silica toolchain provides direct estimates for a 65nm design,
which are then reprojected to 45nm based on standard de-
sign scaling rules. For our custom processor extensions the
Tensilica tools provide area measurement in terms of gate
count. As the gate count of the total processor is also pro-
vided, it is straightforward to extend the area estimate of the
Tensilica tools by the associated instruction extensions over-
head. CACTI5 [42] is used to model cache and local store
area. There is a fixed cost for routing and clocking that
add another 20% to the core chip area. For NoC area esti-
mations, we again used the cost models proposed by Dally
and Balfour [4]. Finally, the quad-channel memory interface
adds 20 mm2 to the chip area regardless of the frequency we
clock the DIMM. This area estimate is consistent with the
specifications for Denali DDR3 memory controller IP blocks
from Cadence Inc. [7] together with Silicon Creations [39]
Programmable Phase Locked Loop (PLL) for the physical
interface. Given each XTensa core is only 1 mm2 and each
256 KB local store is less than 2 mm2, the area consumed by
memory controllers is quite substantial. As such, there is a
clear economy of scale by incorporating many cores to share
the memory controller resources. The result is a 294 mm2

45nm chip, making Green Wave comparable in die size (and
thus manufacturing cost) to a Nehalem processor, and sub-
stantially smaller than the C2050 GPU that weighs in at a
hefty 576 mm2 as shown in Table 2. Figure 3(right) presents
a breakdown of Green Wave area components.

4.3 Modeling Chip Performance
Previous performance modeling of local store (LS) ar-

chitectures [46] have shown that communication (DRAM–
LS) can straightforwardly be decoupled from compute (LS–
FPU) on double buffered stencil codes. This allows bound
and bottleneck analysis to accurately determine performance.
A similar methodology is applied for Green Wave. To model
the required time of direct memory access (DMA) data be-
tween DRAM and the local store, the thread’s ideal block
size must first be computed. This is done via a search that
determines the block dimension providing the best ratio of
stencil area to the requisite DRAM communication that fits

in the local store (after double buffering). The time required
to transfer such blocks is the ratio of bytes to bandwidth per
core. This overhead includes an overfetch of each block due
to the stencil halos, as shown in the last row of Table 1.

Next, we calculate the time required to perform the req-
uisite stencils once a block has been transferred into the
local store. Here we use the XPG toolchain to generate a
cycle-accurate software model of the configured processor,
including any custom hardware extensions added to acceler-
ate the RTM stencils. This model uses the XTensa Instruc-
tion Set Simulator (ISS) to provide the number of cycles
required to execute a given code assuming the data resides
in the local store. Finally, to calculate execution time per
core using double buffering, we compute the maximum be-
tween communication and computation. Given this upper
bound allows us to determine overall performance based on
the number of cores, stencils per core, and flops per stencil.

4.4 RAMP Simulation
The XPG tools used to design a new processor core can

generate a complete RTL gate-list for the target design that
can target an ASIC design flow or can be uploaded to an
FPGA for fast, cycle-accurate emulation of the target chip
design. Our study utilizes the Research Accelerator for
Multi-Processors (RAMP) [6] as the FPGA emulation plat-
form. The direct mapping to FPGAs on the RAMP hard-
ware emulation platform and copious performance data pro-
vide a fast, accurate emulation environment allowing the
benchmarking of real codes ensuring the application devel-
opers are intimately involved in the hardware/software co-
design process. Our current emulation environment provides
direct emulation support of four Green Wave cores complete
with appropriately sized local stores, instruction extensions,
etc., providing a realistic experimental platform.

Although the software simulation environment is unable
to run problems with a volume larger than 1283 per-core
due to the limited amount of memory, 256MB, the simulator
is able to allocate. By contrast the FPGA-based platform
available in the CoDEx simulation flow allows collection of
performance data on problems of more realistic size because
each emulated core has access to several gigabytes of data.
Further, the performance of the FPGA environment does
not degrade as the number of emulated cores increase al-
lowing us to model the performance of multiple cores with
little penalty. The emulation is performed directly on the



gate-level RTL mirroring the physical design that nominally
would be used for place-and-route, mask generation, and
chip fabrication. The fact that the emulated logic is pre-
cisely the actual circuit design for the target chip provides
a superior level of confidence in our software-based methods
as we can constantly verify our software simulation results
against those of the exact model of the hardware platform.
By creating a software simulation environment that mimics
our hardware emulation environment we are able to calibrate
our software-based methods on four cores giving confidence
in the results when we scale to 128 cores using models.

5. PERFORMANCE OPTIMIZATION
In this section we discuss wave equation performance op-

timization, starting with an existing reference implementa-
tion. The optimizations can be divided into software modi-
fications, and in the case of Green Wave, configuration and
specialization of the Tensilica processor for the demands
of RTM. Broadly speaking, the goals of software optimiza-
tion (improving locality, maximizing parallelism, minimiz-
ing memory traffic) are ubiquitous and independent of the
underlying architecture. However, the implementation is de-
pendent on both the architecture and programming model.

5.1 CPU Software Optimization
Our previous stencil optimization work has demonstrated

some of the fastest multicore implementations in the litera-
ture [9, 10, 46]. In this paper, we modify these techniques
for the particular requirements of RTM. Foremost, we opti-
mize the high-order laplacian stencil at the core of the wave
equation. First, the reference implementation included an
inner loop for generalized order. We manually unroll sev-
eral variants and select the appropriate at runtime. Second,
we merge cache blocking and thread parallelization to min-
imize the intra-thread cache working set whilst simultane-
ously maximizing the inter-thread overlap of working sets.
On Green Wave, we extend this technique with DMA-filled
multibuffering to maximize utilization of its on-chip local
stores. Third, we manually unroll and SIMDize the C code
(including cache bypass) to express the requisite data- and
instruction-level parallelism as well as further optimize the
SIMD implementation (“register pipeline”) to minimize L1
accesses. Green Wave’s selection of scalar or VLIW cores
and use of a local store obviates the need for SIMD and
write allocate optimizations respectively. Finally, as the Ne-
halem system is a dual-processor server, we exploit thread
pinning a first touch policy to ensure proper NUMA allo-
cation and to avoid under utilizing the memory controllers
and over taxing the QuickPath Interconnect. The combi-
nation of these optimization techniques resulted in signif-
icant performance improvements, achieving almost a 40×
speedup comparing the sequential single-core version to the
fully optimized kernel running on 8 Nehalem cores. Detailed
performance results are presented in Section 6.

5.2 GPU Software Optimization
Performance optimization of high-order stencils can be

particularly challenging on GPUs due to the complexities
of properly exploiting CUDA shared memory, SIMT execu-
tion, and memory coalescing. To mitigate these challenges
and provide the highest possible performance, we used the
fastest implementation of the high-order stencils available
[27, 28] and ran them on our Fermi accelerated Nehalem

cluster. Broadly speaking, the GPU implementation uses a
multi-buffering scheme similar to that used on the Green
Wave design. However, the GPUs hide memory latency
via massive multithreading rather than DMA. Due to the
limited DRAM capacity, subdomains were limited to 5123.
While the GPU design space was fixed (thus under-utilizing
various aspects), our co-design methodology allows us to find
the appropriate balance between memory capacity, memory
bandwidth, per-core memory and per-core compute.

5.3 Green Wave Optimization
Before starting the iterative co-design process, we selected

a number of fixed design choices that were adopted as bound-
ary conditions for our design study. First, we chose to use
a commodity quad-channel DDR3-1600 memory subsystem,
which presents a low-risk design point from the standpoint
of practical ASIC packaging and power dissipation, and re-
flects the memory performance of existing mainstream prod-
ucts, such as the Nehalem. The choice of conventional mem-
ory also simplifies the power model because the DDR com-
ponents have a well characterized power profile. The sec-
ond baseline design choice was to target a 45nm process to
be consistent with the other chip lithographies used in our
study. That choice bounds our target clock frequency to 1
GHz, and clearly defines the parameters for the power and
area model of the our design. Finally, Green Wave utilizes a
(software controlled) local store architecture as the primary
on-chip cache memory, as previous studies on the Cell have
demonstrated the substantial efficiency benefits that can be
derived from that approach [46] — particularly for stencil
computations. A small L1 data cache remains for each pro-
cessor in order to support convenient code porting, but the
local store is the primary approach for latency hiding and
capturing temporal recurrences in the RTM algorithm.

5.3.1 Local-Store Size and Core Count
The first hardware optimization was selecting the on-chip

memory size so as to capture the maximum number of tem-
poral recurrences for the high-order stencil kernel. In Sec-
tion 2.2 we calculated an average memory traffic per stencil
lower bound of 17.6 bytes for the 8th order wave equation us-
ing 64×32 cache blocks. Moreover, as our implementation
mandates such a kernel keep a working set of 12 working
and 4 buffered planes (some with halos) in the local store,
the wave equation would require a 166 KB of local store for
this decomposition. As one moves to the 12th order wave
equation, the memory requirements increase to 238 KB per
core. Once Green Wave is configured with sufficient on-chip
memory to capture all recurrences, we then determined the
number of processors required to saturate the off-chip mem-
ory bandwidth. Note that an iterative optimization process
is necessary, as changes in the core count requires a resiz-
ing of the local-stores (to incorporate the halos from the
blocked implementation), which in-turn impacts the opti-
mal core count (to effective capture temporal recurrences).
This analysis resulted in a design choice of approximately
100 processor cores and 238 KB of local-store per core. As
a conservative estimate, both of these figures were rounded
up to the nearest power-of-two multiple (256 KB local store
and 128 processor cores) to simplify the layout of the SRAM
mats on chip as well as the NoC topology.

5.3.2 VLIW Extensions
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Figure 4: Wave Equation Performance for 8th and 12th order on 5123 grid. (left) Raw performance. (right)
Energy efficiency, with circle representing solely GPU power (host power ignored).

The Tensilica design flow enables us to add hardware op-
timizations specifically tailored to RTM-based stencil com-
putations to software optimization techniques. Because the
Green Wave architecture includes a correctly sized (256 KB)
local store for capturing all temporal recurrence of data, our
performance model only requires a fixed latency model for
memory accesses, and focuses the optimization effort on re-
ducing instruction count. Therefore our co-design approach
leverages the Tensilica compiler’s ability to bundle instruc-
tions into VLIW, allowing for co-issue of instructions. Be-
cause RTM computations are floating-point intensive, the
base LX2 processor was configured to support maximum
instruction dispatch width of 64 bit and data Load/Store
width of 128 bits, allowing multiple floating point instruc-
tions to be concurrently issued. The Xtensa compiler auto-
matically bundles opcodes depending on the designers spec-
ifications of what opcodes are legal in which slots. From a
hardware perspective, the processor generator tool creates
parallel pipelines capable of executing the various instruc-
tions in each slot. This is a simple and effective optimization
that requires no code changes while providing a potentially
significant performance boost.

5.3.3 Custom Instruction Design
Another approach towards reducing instruction count is

the creation of custom instructions that allow the “fusing”
of commonly used operations. Here we can leverage a key
feature in the Tensilica LX2 design flow that allows the cre-
ation of custom instructions and data types [41]. These in-
structions are written in a language similar to Verilog that
Tensilica calls via the TIE interface. The custom instruc-
tions are fully supported by the Xtensa compiler and become
native intrinsics for use in software development and perfor-
mance modeling. Our first custom allows the computation
of Y and Z loop indices for a given stride to be performed
concurrently. These indices are stored in special registers
for later use as offsets into the data array. The original
code version would calculate these offsets individually, then
do pointer arithmetic to fetch the correct data point from
the array. By pre-computing these values via the custom
instructions the user can pass a pointer to the start of the
array, then select the direction (Y or Z) as well as the offset
(1 through 8) of the desired value. This instruction fetches
the pre-computed offset from the register, calculate the ad-
dress, feeds this new address to the processor’s load/store
unit and then return the value — essentially collapsing two
instructions into a single fast array index operation.

Next, because the LX2 has a limited number (16) of float-

ing point registers, a second 128-bit register file was created
to allow space for more temporaries and an efficient path for
data exchanges between loops iterations. The register file
can be accessed in non-traditional ways, such as rotating a
32-bit float in or out of an individual register, or register
loading with four 32-bit values from the most or least signif-
icant bit. Note that the TIE language does have limitations:
while the TIE compiler auto multi-porting of register files
to support multiple reads per instruction, each instruction
is limited to one write per register file. Thus allowing for a
variety gather operations, but no scatter support.

The novelty in this approach is not the (relatively straight-
forward) custom instructions taken in isolation, but rather
the contribution of these instructions in the context of a
co-design methodology where only the specific functionality
needed to efficiently solve a problem is added to the hard-
ware. Although many of these features are available in other
existing architectures, we are able to provide only the subset
that improves performance — thus maximizing energy effi-
ciency while maintaining programmability. In addition, the
general-purpose nature of these instructions allows them to
be applied to other stencil-based computations, allowing the
Green Wave solution to be applicable to a wide-variety of
high-order methods. Finally, these custom instructions al-
low high performance with a simpler programming method-
ology than Intel intrinsics or CUDA, as detailed in Section 6.

6. PERFORMANCE ANALYSIS
In this section, we discuss the performance and energy ef-

ficiencies of Nehalem, Fermi, and Green Wave in the context
of our optimized implementation. All experiments are con-
ducted in single-precision as described in Section 2 using a
5123 grid, with a memory footprint of about 2GB.

6.1 Performance and Energy Efficiency
Figure 4(left) presents the performance of our three ma-

chines running the (spatially) 8th and 12th order wave equa-
tion on a 5123 grid. Recall that the wave equation behavior
acts as an effective proxy for the more complex full RTM
problem. The Fermi accelerated node outperforms both
Nehalem and Green Wave, attaining an advantage ranging
from 3–4× and 1.6–1.7× respectively. Our Green Wave per-
formance modeling actually shows that bandwidth reduces
the potential performance of the 8th order stencil by 26%.
For the 12th order stencil Green Wave is perfectly balanced
between per-core performance and memory bandwidth. In
higher order implementations, the compulsory memory traf-
fic remains roughly constant (4% increase), while the arith-



Architecture Nehalem Fermi Green Wave
Total Nodes 127,740 66,823 75,968

MPoints/Watt 4.27 6.28 32.63
Time in Communication 9.5% 43% 16%

Total MWatts 38.2 26.1 5.0

Table 3: Extrapolated cluster configuration, sus-
tained energy efficiency and power consumption to
complete 8th order forward and backward model of
30k × 20k × 10k survey with 12,000 timesteps in one
week. Subclusters consist of 256 nodes each with
a 5123 subdomains. Power estimates based on ag-
gregate node-level requirements and do not include
interconnect, external storage, or cooling.

metic intensity (as well as flops per point) increases linearly
with order. Therefore, when the calculation is not band-
width bound, there is a slight degradation in per-core per-
formance. Overall, these results suggest that we have se-
lected the right balance between the number of cores, local
store capacity, and bandwidth given the spectrum of explicit
numerical methods seen in RTM.

Once power considerations are taken into account, Green
Wave shows a 8× and 3.5× energy efficiency advantage over
Nehalem and Fermi respectively. If host power on the Fermi-
accelerated system is ignored, Green Wave’s efficiency ad-
vantage is reduced to about 2× as shown by the small green
circle above the fermi bar in Figure 4. Green Wave would re-
quire at least six DDR3 memory controllers to match Fermi’s
performance. Although this would increase node power by
roughly 25% and increase energy efficiency by a further 20%,
four controllers is comparable to existing commodity prod-
ucts such as the Xeon and Opteron processors. Using a
more conservative design choice for memory technology, we
demonstrate that the Green Wave approach is well suited
towards the parallel nature of RTM stencil calculation and
can utilize hardware customization to maximize energy ef-
ficiency whilst maintaining general programmability. Addi-
tionally, our approach enables an extremely power-efficient
solution with minimal software optimization.

6.2 Projected System Scale Efficiency
We now return to the large-scale survey analysis prob-

lem described in Section 2.3 that performs 8th order for-
ward and backward modeling for a 30k × 20k × 10k survey
with 12,000 timesteps and a total of 120,000 independent
shots within one week. The RTM calculation for each shot
requires a 4096×4096×2048 volume that is domain decom-
posed into 5123 subdomains per node in a 8 ×8×4 processor
grid (256 nodes per shot). These groups of 256 nodes are
arranged as tightly-coupled sub-cluster that is connected to
an Infiniband 4x QDR leaf switches that uplink to a global
system fabric that tapers bandwidth at the upper switch
tiers as there is comparatively less communication between
sub-clusters. A tapered CLOS network of sub-clusters can
easily scale up the total number of sub-clusters to reach the
target throughput of 120,000 shots per week.

In order to quantify communication time, collected MPI
performance data (including buffer packing, and PCIe trans-
fer time) on the NERSC Dirac Nehalem/GPU cluster run-
ning 5123 problems using IPM. Table 3 presents the extrap-
olated node configuration, energy efficiency and power con-
sumption for the three evaluated technology solutions. Note
that the power estimates are based on a detailed analysis
within the node, but do not include power requirements of

interconnect, external storage, cooling and building. Future
work will include a system scale-model that includes these
additional components. However, we assume the total quan-
tity of I/O and other resources required by the compared
cluster solutions would be nearly identical to achieve the
same system throughput and storage capacity and therefore
constitute a fixed-cost for each solution and are smaller than
the projected power consumption of the node and memory.

To qualify our claim that node and memory dominate
power consumption, we use power measurements from the
NERSC Carver cluster [32], to collect the GPU and CPU
performance data, and measurements of similarly config-
ured infiniband x86 clusters [21, 34]. We have estimated
the power that needs to be consumed by a disk subsystem
that is matched to the throughput requirements of the sys-
tem accounts for less than 5% of the overall system power
based on existing RAID-based storage solutions and a simi-
larly configured scalable Infiniband switch solution based IB
4x QDR would account for less than 5-12% of overall system
power contributions. Finally, the NERSC center where the
GPU and CPU tests were performed, delivers a Power Us-
age Effectiveness (PUE) of 1.3, so cooling is not a significant
factor. Therefore, the memory and node power captures the
dominant contributors to overall system power consumption.

Extrapolating per-node performance, communication, and
power requirements, we find that a Nehalem-based cluster
would require on the order of 128,000 nodes (arranged in
subclusters of 256) and consume approximately 38 MWatts
of power for the nodes alone. A GPU-based solution would
reduce the requirements to 66,800 nodes but would still re-
quire a substantial 26 MWatts. The Green Wave approach
requires more nodes (75,000) but only 5 MWatt of power
— a 7.6× and 5.2× energy efficiency improvement in this
aspect of the system as compared to Nehalem and Fermi
(respectively). The advantage of a Green Wave full system
design would likely be further increased through passive sav-
ings e.g. for cooling and software development. This signifi-
cant power savings would open the potential for high-quality
interactive survey analysis at large scale.

6.3 Analysis of Green Wave Methodology
The co-design methodology used to architect Green Wave

demonstrates a clear performance-per-watt advantage over
more general-purpose architectures by leveraging applica-
tion specificity. This trend is evident when observing the in-
crease in performance when moving from larger, more com-
plex cores to arrays of simpler cores. Fermi is similar to
Green Wave as it is a collection of relatively simple cores,
however, while Fermi is able to achieve a greater raw perfor-
mance number, it’s energy efficiency is burdened with fea-
tures specific for graphics processing that do not assist with
the stencil computation, such as rasterizer, texture sampler,
ISA extensions, etc. In contrast, Green Wave begins with an
extremely simple, low-power core and relies on the ability to
selectivity add only the instructions and features necessary
for accelerating stencil computation. In addition to extend-
ing the instruction set, thorough application profiling al-
lows us to properly size the Green Wave local stores, caches,
and on-chip network to create a more balanced architecture.
These customizations do not come at the expense of flexibil-
ity or ease of programmability and allow a straightforward
mapping from ANSI C to the stencil-specific optimizations.
Finally, we note that the potential challenges of correctly



utilizing the software managed memories that act as a key
component in the superior performance of the Green Wave
architecture are not unique to our design.

Our approach relies on off-the-shelf IP to reduce design
and verifications costs. Based on a survey of current in-
dustry pricing, the IP cost of licensing circuit designs for
DDR3 memory controllers, PLL for off-chip drivers, NoC
implementations, and customizable cores for Green Flash
would be approximately $2.5M. By contrast, a full-custom
design for any single component would increase design and
verification costs by one to two orders of magnitude. Pro-
jected non-recurring expenses (NRE) for design services for
design integration, verification and mask generation aver-
aged $2M. Manufacturing costs for the first 10,000 chips at
a 45nm fab (including testing and packaging) is estimated to
be $200/unit and reduces by 35% for volumes greater than
50,000 units. Given this cost model, the important lesson
is that using this design methodology we can move beyond
thinking of the chip as the commodity. Rather, one should
think of the Intellectual Property that you put onto the chip
as the commodity. We believe this design philosophy, com-
bined with a co-design methodology, could transform the
way we design supercomputing systems in the future.

7. CONCLUSION AND FUTURE WORK
The computational demands for RTM simulations for seis-

mic analysis have risen to enormous levels due to ever rising
survey sizes and the need for ever increasing image quality.
Unfortunately, the cost and performance of supercomput-
ing systems used to address these problem are increasingly
dominated by power bills that are set to exceed the cost
of hardware acquisition. The urgent need to improve per-
formance and simulation quality at a fixed power budget
has pushed industry to evaluate alternative computing plat-
forms. In this work we have compared competing hardware
approaches for energy-efficient seismic modeling, which in-
clude modern CPU, GPU-accelerated computing, and solu-
tion composed of an array of lightweight embedded cores
that we call Green Wave. Green Wave embodies a hard-
ware/software co-design design methodology that focuses on
using agile design synthesis tools and cycle-accurate simula-
tion from the embedded design space to optimize the tradeoff
between performance and power requirements while main-
taining general-purpose programmability.

The Green Wave architecture augments baseline low-power
embedded processors with layered hardware optimizations,
including optimized local store size, core count, VLIW ex-
tensions, and register file configuration. Additionally, we
reduced CPI (cycles per instruction) by creating custom in-
structions that allow the fusion of commonly used operations
in PDE solver address calculations. These new instructions
are fully supported by the XTensa compiler and become
native intrinsics for use in software development and per-
formance modeling, and are broadly applicable to a range
of PDE solver problems outside of RTM kernel we inves-
tigated in this paper. Detailed modeling of Green Wave’s
power consumption using Tensilica’s power estimation tools
and performance using the FPGA-accelerated cycle accu-
rate played an essential role in the codesign and performance
evaluation process. Unlike many hardware simulation envi-
ronments, the power and timing models for this emulation
environment have been verified by comparison against simi-

lar taped-out ASIC designs from a broad range of embedded
applications. Green Wave comparisons with fully-optimized
CPU and GPU code version showed that, although raw
performance was slower than Fermi by up to 1.5×, Green
Wave outperformed the Nehalem and Fermi energy efficiency
by more than 8× and 3.5× respectively for node to node
comparison and 7.6× and 5.2× for system level. Although
the peak Flop/s of Intel’s latest Xeon-E3 processors (Sandy
Bridge) is more than double that of Nehalem, they have
no more bandwidth. As such, their sustained energy effi-
ciency on bandwidth-bound, high-order wave equations will
be comparable to today’s Nehalems. Furthermore, the en-
ergy efficiency of future designs (Intel, NVidia, and Green
Wave) all benefit from improved chip lithography and mem-
ory technology, so efficiencies demonstrated for Green Wave
can reasonably continue for future die shrinks. Thus, even
at this early development stage, these results highlight the
long-term potential impact of our design methodology.

It is important to note that, although memory organiza-
tion and locality is critical for all three evaluated architec-
tures, tuning for Green Wave is arguably no more complex
compared with Nehalem and Fermi. We highlight that a
relatively short amount of effort was required to modify the
simple, general-purpose embedded core to one that is en-
hanced for stencil computations. This application-targeted
core was quickly generated using mostly off-the-shelf IP and
represents a significantly easier validation target than a full
custom design — a testament to the sophistication and flex-
ibility that is available in modern embedded design tools.

In future work, we will refine our node models by integrat-
ing a more flexible cycle accurate network-on-chip simula-
tion that we have studied in previous work with Cornell [18,
20] with the node simulation infrastructure. This combined
simulation platform will enable us to explore the energy effi-
ciency and performance of alternative on-chip NoC options
and their interaction with novel extensions to the Tensilica
instruction set for efficient on-chip communication. Addi-
tionally, we will build on our efforts to improve the robust-
ness of the Green Wave architecture to address a broader
range of full RTM code requirements. This includes refining
our performance modeling of the full system configuration in
terms of external storage configuration, as well as address-
ing upcoming algorithmic challenges such as implementing
RTM using the full elastic wave equation. Lastly, we will
further improve our model with measurements of Infiniband
power consumption for on-chip interfaces for the SoC and
the network switch infrastructure. Our current measure-
ments of IB hardware indicates that it is a comparatively
small contribution to the overall power consumption of the
system, but will present results after we have more complete
data. Across this increased design space, we will search for a
pareto-optimal design point that ensures robust performance
and energy efficiency across the range of RTM requirements.

In summary, we have demonstrated the potential of the
co-design methodology to develop and evaluate HPC designs
that can offer substantially improved energy efficiency for
RTM codes. We believe that our proposed approach holds
tremendous promise for the broader landscape of energy-
efficient HPC design in the face of skyrocketing computa-
tional demands and power-limited environments — for both
the seismic industry as well as a broad range of numerically
demanding applications classes that are of interest to the
worldwide scientific community.
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